Chapter 3

Perpendicular and Parallel Lines

Section 6
 Parallel Lines in the Coordinate Plane

GOAL 1: Slope of Parallel Lines

In algebra, you learned that the slope of a nonvertical line is the ratio of the vertical change (the rise) to the horizontal change (the run). If the line passes through the points ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and $\left(x_{2}, y_{2}\right)$, then the slope is given by

$$
\begin{aligned}
\text { Slope } & =\frac{\text { rise }}{\text { run }} \\
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} .
\end{aligned}
$$

Slope is usually represented by the variable m.

Example 1: Finding the Slope of Train Tracks

COG RAILWAY A cog railway goes up the side of Mount Washington, the tallest mountain in New England. At the steepest section, the train goes up about 4 feet for each 10 feet it goes forwards. What is the slope of this section?

Example 2: Finding the Slope of a Line

Find the slope of the line that passes through the points
$(0,6)$ and $(5,2)$.

$$
\frac{6-2}{0-5} \rightarrow \frac{4}{-5}
$$

$$
\frac{2-6}{5-0} \rightarrow \frac{-4}{5}
$$

You can use the slopes of two lines to tell whether the lines are parallel. *Horizontal $=0$; Vertical $=$ undefined

POSTULATE

postulate 17 Slopes of Parallel Lines
In a coordinate plane, two nonvertical lines are parallel if and only if they have the same slope. Any two vertical lines are parallel.

Lines $\boldsymbol{k}_{\mathbf{1}}$ and $\boldsymbol{k}_{\mathbf{2}}$ have the same slope.

Example 3: Deciding Whether Lines are Parallel

Find the slope of each line. Is $j_{1} \| j_{2}$?

$$
\begin{aligned}
& J_{1} \rightarrow \frac{4}{2} \rightarrow \frac{2}{1} \rightarrow 2 \\
& J_{2} \rightarrow \frac{2}{1} \rightarrow 2 \\
& \text { yes, }, \| J_{2}
\end{aligned}
$$

Example 4: Identifying Parallel Lines

Find the slope of each line. Which lines are parallel?

$$
\begin{aligned}
& K_{1} \rightarrow \frac{6-0}{0-2} \rightarrow \frac{6}{-2} \rightarrow-3 \\
& K_{2} \rightarrow \frac{6-1}{-2-0} \rightarrow \frac{5}{-2} \\
& K_{3} \rightarrow \frac{5-0}{-6-4} \rightarrow \frac{5}{-2} \\
& \Rightarrow K_{2} \| K_{3}
\end{aligned}
$$

GOAL 2: Writing Equations of Parallel Lines

In algebra, you learned that you can use the slope m of a nonvertical line to write an equation of the line in slope-intercept form.

$$
y=\vdash^{\text {slope }}+b^{\text {slo }}<y \text {-intercept }
$$

The y-intercept is the y-coordinate of the point where the line crosses the y-axis.

Example 5: Writing an Equation of a Line

Write an equation of the line through the point $(2,3)$ that has aslope of 5 .

$$
\begin{gathered}
y=m x+b \\
3=5(2)+b \\
3=1 \phi+b \\
-10-10 \\
-7=b
\end{gathered}
$$

$$
\Rightarrow y=5 x-7
$$

Example 6: Writing an Equation of a Parallel Line

Line n_{1} has the equation $y=-\frac{1}{3} x-1$.
Line n_{2} is parallel to n_{1} and passes through the point $(3,2)$. Write an equation for n_{2}.

$$
\begin{aligned}
& 2=-\frac{1}{3}(3)+b \\
& 2=-x+b \\
& +1=+1 \\
& 3=b \\
& \Rightarrow y=-1 / 3 x+3
\end{aligned}
$$

